Design and Optimization of Numerical Methods for Solving Inverse Problems
نویسندگان
چکیده
. The purpose of inverse problems is to identify the unknown causes or parameters based on observable effects measurements in a variety scientific and technical domains. To arrive at precise trustworthy solutions, numerical algorithms for must be designed optimised. creation optimisation specifically created solving issues are presented detail this abstract.The formulation mathematical models that explain underlying processes primary topics first part work. We examine many issues, such as ill-posed, parameter estimation, linear nonlinear ones. Prior information regularisation methods used increase stability uniqueness answers.The application solution focus second component. study depth number iterative techniques, including conjugate gradient method, Levenberg-Marquardt algorithm, Gauss-Newton method. There also discussion sophisticated variational methods, Bayesian inference, approaches optimisation.The third consideration focuses optimising techniques raise their effectiveness precision. hasten convergence lower computational costs, like adaptive mesh refinement, parallel processing, model reduction examined. Additionally, handling noisy missing data looked at, well choosing right settings.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices
Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...
متن کاملNumerical Methods for Inverse Singular Value Problems
Two numerical methods one continuous and the other discrete are proposed for solving inverse singular value problems The rst method consists of solving an ordinary di erential equation obtained from an explicit calculation of the projected gradient of a certain objective function The second method generalizes an iterative process proposed originally by Friedland et al for solving inverse eigenv...
متن کاملInexact Numerical Methods for Inverse Eigenvalue Problems
In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Philippine statistician (Quezon City)
سال: 2021
ISSN: ['2094-0343']
DOI: https://doi.org/10.17762/msea.v70i1.2512